

Nanofluidics and graphene

A.-L. Biance, A. Siria, L. Bocquet (ILM) L. Auvray, F. Montel, J.-M. Di Meglio (MSC) J. Gierak, E. Bourhis (LPN) L. Joly (ILM), M.-L. Bocquet (ENS-Lyon) - simulations

Nanofluidics: fluid transport at nanoscales

Applications: biological analysis, energy harvesting, filtration, desalination...

- Get inspiration from efficient natural systems
- Explore new materials / create new functionalities
- Fundamentals of fluid transport: change of paradigm ?

Greger and Windhorst, Comprehensive human physiology (Springer)

AQP-1: water filter- High permeation/high selectivity

Biomolecular analysis

Oukhaled et al., PRL 2007 Cressiot et al., ACS Nano (2012)

Solid state nanopores as bio-sensors

Loïc Auvray et al.

New materials, new behaviors

Fast Mass Transport Through Sub–2-Nanometer Carbon Nanotubes

Jason K. Holt,^{1*} Hyung Gyu Park,^{1,2*} Yinmin Wang,¹ Michael Stadermann,¹ Alexander B. Artyukhin,¹ Costas P. Grigoropoulos,² Aleksandr Noy,¹ Olgica Bakajin¹†

Holt et al. Science (2006)

Enhancement over no-slip, hydrodynamic flow† (minimum)

> 1500 to 8400 680 to 3800 560 to 3100

Falk et al. Nanoletters (2010)

LETTER

Siria et al. Nature (2013)

doi:10.1038/nature118

Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube

 $A less and ro Siria^l, Philippe Poncharal^l, Anne-Laure Biance^l, R\acute{e}my Fulcrand^l, Xavier Blase^2, Stephen T. Purcell^l \& Lyd\acute{e}ric Bocque and State a$

- New tools for fundamental understanding
- Huge produced osmotic power in BN tube 4kW/m² (versus ~5 W/m²)

Why graphene?

Graphene for fluidic applications

Ultimate membrane: atomic thickness (down to Angstroms)

- ✓ Sculpting smaller nanopores (limited by aspect ratio)
- ✓ Huge increase in flow permeability
- ✓ Fine tuning of chemical sensitivity: selectivity, functionalization
- ✓ A new fundamental tool: water and ion transport at the molecular scales

« Reading » molecules

Merchant et al. Nanoletters (2010)

Ultimate biological sensor

C.A. Merchant et al. DNA translocation through graphene Nanopores NanoLetters (2010)

S. Garaj et al. *Graphene as a sub-nanometer transelectrode membrane* Nature (2010)

Dekker et al., Nanoletters (2013)

Nanopores in graphene sheets

3 step process: FIB drilling

J. Gierak et al. (LPN)

To probe biomolecule structure

- Goals:
 - DNA sequencing
 - Protein folding and/or molecular structure probes
- Advantages:
 - very high sensitivity
 - due to atomic thickness
 - fine tuning of molecular interactions
- Challenges:
 - Chemical functionalization
 - Optical characterization (more sensitivity and selectivity)

L. Auvray, F. Montel (MSC)

Ultrafiltration and desalination

Letter

Water Desalination across Nanoporous Graphene

David Cohen-Tanugi and Jeffrey C. Grossman*

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Predictions of (classical) MD simulations

Allows:

- Best selectivity
- Huge permeability

Challenges:

- Need for experiments
- Scale up

Aims:

- Desalination
- New osmotic membranes

A. Siria, A.-L. Biance, L. Bocquet (ILM)

Blue energy harvesting

Harvest free energy available from difference in salinity (sea-river)

REVIEW Logan & Elimelech, Nature (2012)

Membrane-based processes for sustainable power generation using water

Bruce E. Logan¹ & Menachem Elimelech²

Dedicated membranes:

Selective (semi-permeable) or ion-selective, chemically coated...

• Efficiency:

State of the art (Majumdar, 2010): ~ 7W/m² BN nanotubes (Siria et al., 2013): 4000 W/m² Graphene or BN membrane: 10^{??} W/m²

BN few layers membranes Sutter et al. Nanoletters (2013)

A. Siria, A.-L. Biance, L. Bocquet (ILM)

Models

Aim:

- modeling of fluid transport through/close to graphene
- fundamental understanding to develop new functionalities

Two levels of modeling:

- semi-empirical: collective dynamics of water and ions
- Ab initio: molecular interactions and electronic properties

Mesoscale bridge required at quantum/classical interface

Water-BN interaction with X. Blase (Siria et al. 2013)

L. Joly, L. Bocquet (ILM), M.-L. Bocquet (ENS Lyon)

Nanofluidics and graphene ✓ Nanofabrication ✓ Bio-diagnosis ✓ Energy harvesting and desalination ✓ Linking classical and quantum properties

ENS DE LYON

Kidney: a very advantageous nano-filter

Greger and Windhorst, Comprehensive human physiology (Springer)

> AQP-1: water filter High permeation/high selectivity

Artificial systems can be improved!