FET Flagship Graphene

WP Energy (ramp-up phase)

WP coordinator: Etienne QUESNEL (CEA-Liten)

Deputy coordinator: Vittorio Pellegrini (CNR)

WP partners: A. Ferrari, C. Grey, T. Hasan (UCAM), A.Talyzin (UMEA), F. Giustino (UOXF)
A. Paez (REP), D. Wei, J. Kinova (Nokia), G. seifert, J-Ole Joswig (TUDr),
E. Kymakis (TEIC), L. Crema (FBK), P. Le Barny, P. Legagneux (TRT),
L. Manna, R. Krahne (IIT), B. Saner Okan, Alkan Gürsel (SU), T. Rojo (CIC),
S. Patoux, S. Perraud (CEA)
Scientific work packages

- WP1 Materials
- WP2 Health & Environment
- WP3 Fundamental science of graphene and 2D materials beyond graphene
- WP4 High Frequency Electronics
- WP5 Optoelectronics
- WP6 Spintronics
- WP7 Sensors
- WP8 Flexible Electronics
- WP9 Energy Applications
- WP10 Nanocomposites
- WP11 Production
In the 10-year perspective, this WP will develop and demonstrate the industrial potentials of key enabling graphene-based technologies for:

- Energy production systems: photovoltaics, fuel cells
- Energy storage systems: batteries, supercapacitors and hydrogen storage
Photovoltaics

Partners: CEA-Liten (CEA), Uni. Oxford (UOXF), Italian Institute of technology (IIT), Technological Education Institute of Crete (TEIC).

Criteria: conversion efficiency, €/Wp

- 3 technological routes privileged:
 - Inorganic thin film PV: chalcogenide, wet process (CEA).
 - Organic PV (TEIC)
 - QD cells (IIT)

- Integration of Graphene:
 - Electrodes (e- and hole extraction layers),
 - Absorber layer.

- Support optronic modelling (UOXF)
Photovoltaics

- Chalcogenide (CIGS, CZTS) wet processed solar cells

Conventional process
- TCO by sputtering
- CdS: chemical bath
- co-evaporation or sputtering
- Sputtering

Innovative wet process
- G-based electrode
- Cd-free buffer layer
- CIGS or CZTS* by wet process
- Sputtering

World record cell: PCE = **20.3%** in co-evaporation

* Cu$_2$ZnSn(S$_{1-x}$Se$_x$)$_4$ based solar cell produced by selenization of vacuum deposited precursors
Photovoltaics

- Organic solar cells: world record cell: $\eta \approx 9\%$ in single junction (visible)

Present issues

ITO: scarcity, lack of flexibility, poor transparency in Near Infrared.

PEDOT:PSS: acidic solution, unstable.

Novel GO reduction approach: TCO electrodes

Flexible OPV Cells with In Situ Non thermal Photoreduction of Spin-Coated Graphene Oxide Electrodes
Photovoltaics

- QD solar cells: tunable bandgaps for less thermalization losses

World record: PCE = 4.4% with ZnO / PbS QD heterojunctions.

Present issues

Extraction of photo-carriers difficult!

High rate of recombinations

Operating solar cells with QD-functionalized graphene as PV absorber:

QD = Cu_{2-x}S or Cu_{2-x}Se
Partners: Sabancy University (SU)

Criteria: catalyst utilization efficiency W/g.Pt, lifetime.

- 2 technological routes privileged:
 - Pre-functionalization of G-sheets: control the Pt/Pt alloy catalyst grafting
 - Graphene-based nanocomposites (WP10)

- Integration of Graphene
 - Single fuel cells for electrical characterization.
Proton Exchange Membrane Fuel Cells

- Use of functionalized G-sheets: better control of electrode surface area, conductivity, catalyst localization and water draining.

\[\text{H}_2 \rightarrow 2\text{H}^+ + 2e^- \quad \frac{1}{2} \text{O}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2\text{O} \]

Present issues

- High Pt content (ink): \(-0.4\text{mg/cm}^2\)
- Only a few % Pt is effective

5kW/g.Pt (SoA~1kW/gPt)
Batteries

Partners: CEA-Liten (CEA), NOKIA.UKL, REPSOL (REP), Uni. Cambridge (UCAM), CIC Energygune (CIC).

Criteria: power density (kW/kg), energy density (Wh/kg), charging time, lifetime

- **3 technological routes:**
 - GO-based route for the coating of electrodes (CEA).
 - Graphene/nanocrystals electrodes (UCAM).
 - Flexible electrodes: CVD graphene-Cu foil and graphene ink processing (NOKIA).

- **Support characterisation activities**
 - NMR characterisation during battery operation (UCAM).
 - Conventional battery testing (REP, CIC, CEA).
 - Dynamic modelling for lifetime prediction (REP).
Li⁺ Batteries

- GO-based route for the coating of electrodes: charging time

Statement:

- Most electrode active materials suffer from a poor conductivity (LiFePO₄, LiMnPO₄, Si, Li₁₊ₓMₓO₂, where M=Mn, Ni, Co, ...)

- Carbon coating by high T°C pyrolysis of C-precursors under controlled atmosphere: energy demanding.

Optimize GO process implementation

Better control of G thickness and structure
Graphene/nanocrystals electrodes: lifetime.

Statement:
- Active materials suffer from huge volume changes during charging/discharging.
- Affect the cycle lifetime.

Use of nanocrystal-based hosting materials: Si for inst.

=> Requires nano-engineering

Flagship approach
- *Ex-situ* or *In-situ* growth of Si nCs between graphene layers.

- Porous FeOx ribbons grown on graphene (WP10)

Battery with much higher cycle lifetime: >1000

C-coated Si nCs

Granule made of Carbon interconnected Si nCs

Work done at Georgia Tech. (2010)

~10µm
Supercapacitors

Partners: CIC Energygune (CIC), Thales (TRT), Uni. Cambridge (UCAM).

Criteria: power density (kW/kg) and energy density (Wh/kg)

- 2 technological routes for electrochemical double layer capacitors:
 - GO-based route for the development of cost effective synthesis of electrodes (CIC).
 - Mesoporous electrodes combining CNT and graphene (TRT).

- Support characterisation activities
 - NMR characterisation: charging mechanisms versus electrode microstructure (UCAM)
Supercapacitors

- GO-based route: Microwave process for cost effective synthesis of electrodes.

 Objective: maximize the surface area of carbon electrodes

 ![GO to a-MEGO process diagram]

 Conductivity = 270 S/m
 Surface area ~500 m²/g

 (*) C ~190 F/g in KOH

 Target: >20 Wh/Kg

Mesoporous electrodes combining CNT and graphene

Conventional process:
✓ Electrode = activated carbon (high surface area).
✓ Very small pores (1 nm) not easily accessible to ions of electrolyte.

Innovative approach:
✓ Use of a composite electrode: graphene + CNT.
✓ Recently demonstrated*:
 • C = 290F/g in aqueous electrolyte.
 • Energy density = 62Wh/Kg
 • Power density = 58.5kW/Kg.

Hydrogen storage

Partners: CNR Pisa, Uni. Umea, Technical Uni. Dresden (TUDr), Bruno Kessler Foundation (FBK)

Criteria: storage capacity (Kg/m3) and density (Wt%), ease of uptake/release of H$_2$

- 3 technological routes for the hosting material:
 - Decorated graphene with metal ad-atoms or molecular groups (FBK, UMEA, TUDr).
 - Intercalated multilayered graphene (UMEA).
 - Curved graphene sheets (CNR, UMEA).

- Support activities
 - Modelling studies: interaction G-H2 with/without interlayer metal spacers, H2 storage capacity vs G-functionalization, etc… (CNR, TUDr)
 - Preliminary integration studies: testing tank (FBK).
Hydrogen storage

- Decorated graphene with metal ad-atoms or molecular groups
 - Tuning of surface kinetics of ad- and de-sorption reactions (H2-H spill-over process)

Modify graphene with various chemical species, such as Calcium or transition metals (Titanium) or Nitrogen

Capacity up to 5-9 wt%

Target: 3% wt% at RT
Hydrogen storage

- Curved graphene sheets
- Control H2 uptake/release via graphene curvature

* Change with curvature of H binding E on graphene (modelling)

Thank you for your attention